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The Classical van der Corput Difference Theorem

Definition

A sequence (xn)
∞
n=1 ⊆ [0, 1] is uniformly distributed if for any

open interval (a, b) ⊆ [0, 1] we have

lim
N→∞

1

N
|{1 ≤ n ≤ N | xn ∈ (a, b)}| = b − a. (1)

Theorem (van der Corput, 1931 [vdC31])

If (xn)
∞
n=1 ⊆ [0, 1] is such that (xn+h − xn)

∞
n=1 is uniformly

distributed for every h ∈ N, then (xn)
∞
n=1 is itself uniformly

distributed.

Corollary

If α ∈ R is irrational, then (n2α)∞n=1 is uniformly distributed.
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Hilbertian van der Corput Difference Theorems 1/3

Theorem (HvdCDT1, Bergelson, 1987 [Ber87, Theorem 1.4])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
N→∞

1

N

N∑
n=1

⟨xn+h, xn⟩ = 0, (2)

for every h ∈ N, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (3)
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Hilbertian van der Corput Difference Theorems 2/3

Theorem (HvdCDT2, Bergelson, 1987 [Ber87, Page 3])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bounded sequence

satisfying

lim
h→∞

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then (4)

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0. (5)
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Hilbertian van der Corput Difference Theorems 3/3

Theorem (HvdCDT3, Bergelson, 1987 [Ber87, Theorem 1.5])

If H is a Hilbert space and (xn)
∞
n=1 ⊆ H is a bded seq. satisfying

lim
H→∞

1

H

H∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣ = 0, then lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

xn

∣∣∣∣∣
∣∣∣∣∣ = 0.

Question

Why would we ever use HvdCDT1 or HvdCDT2 when they are
both corollaries of HvdCDT3? Why are there at least 3 Hilbertian
vdCDTs and only 1 vdCDT in the theory of uniform distribution?

See [Far22, Chapter 2] for variations of vdCT related to the levels
of mixing in the ergodic hierarchy of mixing properties, as well as
similar variations in the context of uniform distribution. See also
[Tse16] and [EKN22].
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Applications of HvdCDTs 1/2

Theorem (Poincaré)

For any measure preserving system (m.p.s.) (X ,B, µ,T ), and any
A ∈ B with µ(A) > 0, there exists n ∈ N for which

µ(A ∩ T−nA) > 0. (6)

Does not need vdCDT.

Theorem (Furstenberg-Sárközy [Fur77],[Sár78])

For any m.p.s. (X ,B, µ,T ), and any A ∈ B with µ(A) > 0, there
exists n ∈ N for which

µ(A ∩ T−n2A) > 0. (7)

Furstenberg’s proof in [Fur77, Proposition 1.3] uses a form of
vdCDT since it uses the uniform distribution of (n2α)∞n=1. See also
[Ber96, Theorem 2.1] for a proof using HvdCDT1 directly.
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Applications of HvdCDTs 2/2

Theorem (Furstenberg multiple recurrence, [Fur77])

For any m.p.s. (X ,B, µ,T ), any A ∈ B with µ(A) > 0, and any
ℓ ∈ N, there exists n ∈ N for which

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−ℓnA

)
> 0. (8)

The proof presented in [EW11] uses HvdCT3 as Theorem 7.11,
and the proof in [Fur81] uses a variation.

Theorem (Bergelson and Leibman, [BL96, Theorem A0])

For any m.p.s. (X ,B, µ, {Ti}ℓi=1) with the Tis commuting, any
A ∈ B with µ(A) > 0, and any {pi(x)}ℓi=1 ⊆ xN[x ], there exists
n ∈ N for which

µ
(
A ∩ T

−p1(n)
1 A ∩ T

−p2(n)
2 A ∩ · · · ∩ T

−pℓ(n)
ℓ A

)
> 0. (9)

Uses an equivalent form of HvdCT3 as Lemma 2.4.
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Lebesgue spectrum and singular spectrum

Definition

Let X = (X ,B, µ,T ) be an invertible m.p.s. and let
UT : L2(X , µ) → L2(X , µ) be the Koopman operator induced by
T . If L20(X , µ) has an orthogonal basis of the form {Un

T fm}n,m∈Z,
then X has Lebesgue spectrum. This implies that for all
f ∈ L20(X , µ), the sequence (⟨Un

T f , f ⟩)∞n=1 is the Fourier
coefficients of some measure ν << L, where L is the Lebesgue
measure. On the other hand, if for every f ∈ L2(X , µ), the
sequence (⟨Un

T f , f ⟩)∞n=1 is the Fourier coeficients of some positive
measure ν ⊥ L, then the system X has singular spectrum.
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Examples of systems with Lebesgue spectrum

Any K-mixing system has Lebesgue spectrum, hence all Bernoulli
systems have Lebesgue spectrum. The Sinai factor theorem [Sin62]
tells us that a non-atomic ergodic m.p.s. with positive entropy has
a Bernoulli shift as a factor, and consequently has a factor with
Lebesgue spectrum. It follows that the original system does NOT
have singular spectrum. The horocycle flow is an example of a
system with Lebesgue spectrum [Par53] that also has 0-entropy
[Gur61].

Sohail Farhangi vdC difference thm and LRR Frame 12



Examples of systems with singular spectrum

In [Hal44] and [BdJLR14] it is shown that if (X ,B, µ) is a
standard probability space, and Aut(X ,B, µ) is endowed with the
strong operator topology, then the set of transformations that are
weakly mixing and rigid is a generic set. Since any rigid
automorphism (such as a group rotation) has singular spectrum,
we see that the set of singular automorphisms is generic. Now let
S ⊆ Aut(X ,B, µ) denote the collection of strongly mixing
transformation, and note that S is a meager set since an
automorphism cannot simultaneously be rigid and strongly mixing.
Since S is not a complete metric space with respect to the strong
operator topology, a new topology was introduced in [Tik07], with
respect to which S is a complete metric space. It is shown in the
Corollary to Theorem 7 of [Tik07] that a generic T ∈ S has
singular spectrum, and such a T is mixing of all orders due a well
known result of Host [Hos91]. See [Fay06],[KR97][AH12], [BS22],
and [FL06] for more examples of T that have singular spectrum.
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The left regular representation

Let G is a locally compact Hausdorff group with left Haar measure
λ. There is a unitary representation L of G on L2(G , ν) given by
(Lg f )(h) = f (g−1h), which is known as the left regular
representation. If f ∈ L2(G , ν) is a positive definite function,
then there exists a function h ∈ L2(G , λ) for which
f (g) = ⟨Lgh, h⟩. In particular, consider a representation U of G on
H, and a cyclic vector f ∈ H such that∫

G

|⟨Ug f , f ⟩|2dλ(g) < ∞. (10)

Then U is isomorphic to a subrepresentation of the left regular
representation.
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Spectrum and the left regular representation

Let G be an amenable group and X := (X ,B, µ, {Tg}g∈g ) a
measure preserving G -system, which we abbreviate to G -system.
We let U : L2(X , λ) → L2(X , λ) denote the unitary representation
of G induced by T , i.e., Ug f = f ◦ Tg−1 . The system X has
Lebesgue spectrum if U decomposes into a direct sum of
countably many copies of the left regular representation. The
system X has singular spectrum if the representation U is
disjoint from the left regular representation. Dooley and Golodets
[DG02] showed that if G is countable and X has completely
positive entropy (analogue of K -mixing) then it also has Lebesgue
spectrum. Danilenko and Park [DP02] proved an analogue of
Sinai’s factor theorem when G is countable, from which we deduce
that X does not have singular spectrum when it is free, ergodic,
and has positive entropy.
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A Lebesgue spectrum vdCDT

Theorem (F. 2023)

If (xn)
∞
n=1 ⊆ H is a bounded sequence satisfying

∞∑
h=1

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

⟨xn+h, xn⟩

∣∣∣∣∣
2

< ∞, (11)

then (xn)
∞
n=1 is a spectrally Lebesgue sequence. In particular, if

(cn)
∞
n=1 ⊆ C is bounded and spectrally singular, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
n=1

cnxn

∣∣∣∣∣
∣∣∣∣∣ = 0. (12)

Furthermore, if H = L2(X , µ) and (cn)
∞
n=1 ⊆ L∞(X , µ) is bounded

and spectrally singular, then we again have Equation (12).
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A Lebesgue spectrum vdCDT for amenable groups

Theorem (F. 2023)

Let G be a countable amenable group and (Fn)
∞
n=1 a left Følner

sequence. If (xg )g∈G ⊆ H is a bounded sequence satisfying

∑
h∈G

lim sup
N→∞

∣∣∣∣∣ 1

|FN |
∑
g∈FN

⟨xgh, xg⟩

∣∣∣∣∣
2

< ∞, (13)

then (xg )g∈G is a spectrally Lebesgue sequence. In particular, if
(cg )g∈G ⊆ C is bounded and spectrally singular, then

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ 1

|FN |
∑
g∈FN

cgxg

∣∣∣∣∣
∣∣∣∣∣ = 0. (14)

Furthermore, if H = L2(X , µ) and (cg )g∈G ⊆ L∞(X , µ) is bounded
and spectrally singular, then we again have Equation (14).
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Noncommutative ergodic theorems 1/2

Theorem (Frantzikinakis [Fra22, Corollary 1.7])

Let a : R+ → R be a Hardy field function for which there exist
some ϵ > 0 and d ∈ Z+ satisfying

lim
t→∞

a(t)

td+ϵ
= lim

t→∞

td+1

a(t)
= ∞.

(
e.g. a(t) = t1.5

)
(15)

Furthermore, let (X ,B, µ) be a probability space and
T , S : X → X be measure preserving transformations. Suppose
that the system (X ,B, µ,T ) has zero entropy. Then

(i) For every f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · S⌊a(n)⌋g = E[f |IT ] · E[g |IS ], (16)

where the limit is taken in L2(X , µ).
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Noncommutative ergodic theorems 2/2

Theorem (Continued)

(ii) For every A ∈ B we have

lim
N→∞

1

N

N∑
n=1

µ
(
A ∩ T−nA ∩ S−⌊a(n)⌋A

)
≥ µ(A)3. (17)

Frantzikinakis and Host [FH21] proved a similar theorem for
a(n) = p(n) with p(x) ∈ Z[x ] of degree at least 2.
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An Example

Theorem (Frantzikinakis, Lesigne, Wierdl [FLW12, Lemma 4.1])

Let a, b : N → Z \ {0} be injective sequences and F be any subset
of N. Then there exist a probability space (X ,B, µ), measure
preserving automorphisms T , S : X → X , both of them Bernoulli,
and A ∈ B, such that

µ
(
T−a(n)A ∩ S−b(n)A

)
=

{
0 if n ∈ F ,
1
4

if n /∈ F .
(18)

In light of Sinai’s Factor Theorem, we see that the assumption of
0-entropy in the last 2 slides cannot be weakened.
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Application 1/3

Theorem (F., 2023)

Let (X ,B, µ) be a probability space and let T , S : X → X be
measure preserving automorphisms for which T has singular
spectrum. Let (kn)

∞
n=1 ⊆ N be a sequence for which

((kn+h − kn)α)
∞
n=1 is uniformly distributed in the orbit closure of α

for all α ∈ R and h ∈ N.
(i) For any f , g ∈ L∞(X , µ) we have

lim
N→∞

1

N

N∑
n=1

T nf · Skng = E [f |IT ]E[g |IS ], (19)

with convergence taking place in L2(X , µ).
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Application 1/3 continued

Theorem (Continued)

(ii) If A ∈ B then

lim
N→∞

1

N

N∑
n=1

µ
(
A ∩ T−nA ∩ S−knA

)
≥ µ(A)3. (20)

(iii) If we only assume that ((kn+h − kn)α)
∞
n=1 is uniformly

distributed for all α ∈ R \Q and h ∈ N, then (i) and (ii) hold
when S is totally ergodic.

Examples include kn = ⌊a(n)⌋ with a(n) being as in frame 19,
kn = ⌊n2 log2(n)⌋, and for part (iii) we may take kn = p(n) for
p(x) ∈ xZ[x ] with degree at least 2. An analogous result is now
known for countable abelian groups.
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Sets of K but not K + 1 recurrence?

Theorem (Frantzikinakis, Lesigne, Wierdl [FLW06])

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4
, 3
4

]}
.

(i) If (X ,B, µ) is a probability space and
S1, S2, · · · , Sk−1 : X → X are commuting measure preserving
transformations, then for any A ∈ B with µ(A) > 0, there
exists n ∈ Rk for which

µ
(
A ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (21)

(ii) There exists a m.p.s. (X ,B, µ,T ) and a set A ∈ B satisfying
µ(A) > 0 such that for all n ∈ Rk we have

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
= 0. (22)
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Application 2/3

Theorem (F., 2023)

Let k ≥ 2 be an integer and α ∈ R be irrational. Let
Rk =

{
n ∈ N | nkα ∈

[
1
4
, 3
4

]}
. Let (X ,B, µ) be a probability

space and S1, S2, · · · , Sk−1 : X → X commuting measure
preserving automorphisms. Let T : X → X be an measure
preserving automorphism with singular spectrum, and for which
{T , S1, S2, · · · , Sk−1} generate a nilpotent group. For any A ∈ B
with µ(A) > 0, there exists n ∈ R for which

µ
(
A ∩ T−nA ∩ S−n

1 A ∩ S−n
2 A ∩ · · · ∩ S−n

k−1A
)
> 0. (23)

Since the system (T2,B2,L2,T ) with T (x , y) = (x + α, y + x)
can be used in item (ii) of the last slide when k = 2, the current
theorem does not hold for a general T with 0 entropy. Also note
that the maximal spectral type of T is L+

∑
n∈Z δnα.
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Application 3/3

Theorem (F., 2023)

Let K be a countable field with characteristic 0. Let (X ,B, ν) be
a probability space and Tg , Sg : X → X measure preserving actions
of (K ,+) for which the action (Tg )g∈K has singular spectrum and
the action (Sg )g∈K is ergodic. Let (Fn)

∞
n=1 be a Følner sequence in

(K ,+) and ℓ ∈ N. Let p1, · · · , pℓ ∈ K [x ] be polynomials for which
deg(pi+1) ≥ 2 + deg(pi) for 1 ≤ i < ℓ. Then for any
f0, f1, · · · , fℓ ∈ L∞(X , µ) we have

lim
N→∞

1

|FN |
∑
n∈FN

Tnf0

ℓ∏
j=1

Spj (n)fj = E[f0|IT ]
ℓ∏

j=1

∫
X

fjdν (24)

with convergence taking place in L2(X , ν).

This is a corollary of a more general result involving joint
ergodicity.
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An example

Consider the m.p.s. ([0, 1]2,B,L2,T , S) with
S(x , y) = (x + 2α, y + x) for some α ∈ R \Q, and
T (x , y) = (x , y + x). We see that ([0, 1]2,B,L2, S) and
([0, 1]2,B,L2,T ) are both zero entropy systems that are not
weakly mixing, and the former is totally ergodic. Furthermore, T
and S generate a 2-step nilpotent group. For
f0(x , y) = e2πi(x−y), f1(x , y) = e2πiy , and f2(x , y) = e−2πix , we see
that

lim
N→∞

1

N

N∑
n=1

T nf0(x , y)S
nf1(x , y)S

1
2
(n2−n)f2(x , y)

= lim
N→∞

1

N

N∑
n=1

e2πi((1−n)x−y+y+nx+(n2−n)α−x−(n2−n)α) = 1 ̸= 0.
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